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Productivity growth substantially impacts rent-maximizing resource stocks, and can lead to an economic
optimum that has overfished stocks: BMEYoBMSY. Bioeconomic models can give biased results and
policy advice when not accounting for time-varying catchability—notably due to productivity growth—
and density-dependent catchability, and not distinguishing between fishery-dependent and fishery-in-
dependent data and implications for catchability, modeling, and applicability of results. Productivity
growth, as a component of time-varying catchability, also impacts stock assessments. CPUE standardi-
zation and productivity measurement both face an identification issue in disentangling changes in re-
source stocks from changes in productivity as well as endogenous regressors for which there are po-
tential identification strategies. An empirical example illustrates BMEYoBMSY.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Growth in productivity or fishing power impacts the optimum
exploitation of renewable resources such as marine capture
fisheries.1 This paper examines several of these key impacts upon
bioeconomic models, population assessments, and the consequent
policy recommendations.

First, the paper considers the effects of accounting for productivity
growth in normative bioeconomic models. The bioeconomics litera-
ture, recently reviewed by [1–4], has largely overlooked the growing
body of economic literature on the economics of productivity growth,
reviewed by [5] in this volume. The bioeconomics literature re-
commends dynamic maximum economic yield (MEY) and biomass (or
numbers of animals), denoted by B, of the resource stock (BMEY)
corresponding to BMEY4BMSY (maximum sustainable yield resource
stock), because a larger biomass lowers search and harvest costs that
in turn raise economic rent [6–8]. In contrast, after incorporating
productivity growth into bioeconomic models, BMEYoBMSY, because
productivity growth lowers search and harvest costs on an on-going
basis, and when coupled with discounting, there are weaker
Ltd. This is an open access article u

tch per unit of a single input
al factor productivity). Pro-
eries literature. Productivity
most important of which is
incentives to lower costs by keeping fish in the water [3].
The bioeconomics literature reaches additional conclusions that

may not hold when incorporating productivity growth. The per-
ceived crisis in global fisheries [7,9] is likely misstated in terms of
economic rent, effective effort, and natural capital when productivity
growth is accounted for in bioeconomic modeling [3]. Recommended
optimum fleet sizes, nominal effort or physical capital levels, re-
source stock targets, and policy instruments simply do not match the
more productive technology and its continual growth that are on-
going but are unaccounted for in current dynamic models. Rebuild-
ing strategies [8] do not correspond to BMEY and impose un-
necessary costs when accounting for productivity growth. The pre-
sence of productivity growth increases the risk of extinction, and
more generally biodiversity loss, greater than considered by [1] and
others. The bionomic (open-access) equilibrium of Gordon [10] may
only exist, if at all, at levels much lower than currently held.

Second, the paper discusses how accounting for productivity
growth and its measurement are closely related to issues that
arise with catchability in population assessments and that also
bear upon bioeconomic models.2 The population assessment,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2 Catchability has several definitions [11]. One is the parameter that relates an
index of relative abundance to population size (absolute abundance). Another is the
proportionality parameter between fishing effort and fishing mortality or the
portion of the stock captured by one unit of effort. The earliest known theoretically
rigorous economics paper on time-varying and density-dependent catchability is
[12]. Ekerhovd and Gordon [13] also raise the identification issue when using re-
source stock to evaluate catch-effort (or by extension productivity) relationships,
and propose a specific identification strategy for VPA models. This paper builds
upon both papers, as well as [11] and [3].
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bioeconomic, and fisheries productivity literatures grapple with, or
should grapple with, catchability that is potentially time-varying
and density-dependent and with the implications from using
fishery-dependent and fishery-independent data.3 Most im-
portantly, stock assessments aim to remove the effect of pro-
ductivity growth from stock estimates and economists want to
remove the effect of stock changes from productivity growth. Both
require an identification strategy to disentangle the two sources of
change, often using the same fishery-dependent data. Productivity
theory also provides a number of insights for standardization of
catch and effort data.

Third, there is not an explicit, theoretically consistent me-
chanism to incorporate productivity growth into population as-
sessments, and this paper discusses some possible approaches.
Through the empirical example, the paper shows how to specify
the catchability coefficient to account for growth in productivity or
fishing power consistent with productivity theory. In this vein,
catch per unit effort or CPUE, which is typically a partial rather
than total factor productivity measure, may not accurately mea-
sure relative stock abundance and/or density, since not all eco-
nomic inputs, and in many instances productivity growth, that
affect fishing mortality are captured.

This paper illustrates the impact of productivity growth, mea-
sured by an economic index number, upon MEY and BMEY for the
US and Canada Pacific coast albacore (Thunnus alalunga) troll
fishery. It employs a very simple bioeconomic model that accounts
for productivity growth. It eschews a spatial bioeconomic model
with density-dependent fish movement between spatially linked
distinct populations or substocks, because supporting empirical
biological evidence is absent for many fish species, and especially
for northern albacore, which make ontogenetic migrations [14].4

Section 2 discusses the relationships between productivity
measurement and catchability, population assessments, bioeco-
nomic models, and the use of fishery-dependent and -in-
dependent data. Section 3 summarizes growth accounting and
productivity, the Malmquist productivity measure, and bioeco-
nomic models. Section 4 incorporates productivity growth into the
Golden Rule of renewable resource economics. Section 5 provides
empirical results and discusses policy implications. Section 6
concludes.
2. Catchability and fishery-dependent and -independent data

2.1. Issues in catchability

Several questions arise for productivity growth measures and
bioeconomic models and their relationship to catchability and
population assessments and the use of fishery-dependent and
-independent data.5 First, catchability, of which productivity is a
part, may be density-dependent (elaborated upon below), so that
bioeconomic models and population assessments may not fully
3 The most common source of fishery-dependent data is catch and effort in-
formation from commercial or recreational fishers. Surveys and life history studies
provide some of the most important sources of fishery-independent data. Popu-
lation assessments have long recognized these issues as is discussed herein.

4 Source-sink larval or density-dependent fish movements between patches or
meta-populations are not biologically supported spatial processes with albacore
(and most other small and large pelagic species and some demersal species) [14].
Albacore broadcast spawn, and age 2–5 albacore migrate along the North Pacific
Transition Zone.

5 The discussion follows the bulk of the population dynamics literature and is
couched in terms of surplus production models, in which catchability may be re-
presented by a single coefficient. However, Eric Thunberg (personal communica-
tion) notes that in age-based or cohort models, catchability is represented as a
vector. If selectivity is dome shaped, density-dependent growth may influence the
number of ages that remain susceptible to the gear.
and accurately track the entire population [11,12].6

Second, both productivity measures and stock assessments
may use all or part of the same fishery-dependent data, potentially
requiring an identification strategy to disentangle changes in re-
sources stocks from changes in productivity. Third, productivity
measures may use estimates of stock size from assessments that
incorporate time-varying catchability. This can confound the pro-
ductivity measures, since productivity measures are only one of
several potential sources of time-varying catchability. Again, an
identification strategy is required. Fourth, productivity measures
can employ absolute resource stock measures or relative changes
in stocks, where the latter are generally considered more reliable
and the former are not always available (e.g., from yield-per-re-
cruit analysis [15]). Fifth, catchability may be effort-dependent, in
which catchability varies with the level or scale of effort and the
crowding externality [12]. However, other than noting knowledge
spillovers that depend upon the level of investment in physical
capital, this fifth topic is left for future discussion.

Before proceeding to consider the first three questions in greater
depth, note that CPUE, a widely used measure of relative stock
abundance and/or of local density, is an average product of effort
and a partial productivity measure, since only a single input is used,
such as a measure of fishing time (days, sets). In contrast, total
factor productivity (TFP) is measured using all inputs, since TFP is
measured as a residual after accounting for changes in all inputs,
including resource stocks [16]. CPUE, when a partial productivity
measure, may not accurately measure relative stock abundance,
since not all inputs that affect fishing mortality are captured.7

2.2. Density-dependent catchability

Productivity measures, bioeconomic models, and stock assess-
ments are all potentially subject to density-dependent catchability
of harvesting vessels. A stock is not evenly distributed and changes
spatially and temporally as its abundance changes [11,12,18,19]. In
addition, fisher search is non-random or there can be gear sa-
turation or density-dependent gear avoidance behavior, all of
which can affect catchability in fisheries and surveys. Fleet spatial
expansion can also affect density-dependent catchability.

Density-dependent catchability has implications for use of
fishery-dependent and fishery-independent data. Stock assess-
ment from a restricted part of a stock's range requires the stock to
decrease in the same proportion across the entire range in which it
is fished, a linear relationship [11,18,19]. For CPUE to represent
abundance, averaging catch rates for any time period over only
areas fished requires assumptions about what catch rates would
have been in areas that had not yet or were no longer fished
[11,20]. Ignoring unfished areas and averaging only over areas
fished (i.e., using fishery-dependent data) essentially assumes
fleets behaved the same in both fished and unfished areas, and
leads catchability and productivity measures to potentially exhibit
“hyperstability” or “hyperdepletion.” Density-dependent
6 An anonymous referee noted that the traditional view of density-dependent
catchability posits that even if data are available for the whole population, the
observed trend in the index does not track that of the population due to a nonlinear
relationship between them. This is a different but related, problem to only having
data for a portion of the population.

7 Excluding the resource stock leaves a TFP residual that reflects changes in
both productivity and the resource stock [16]. CPUE as a measure of abundance
faces considerable problems [17]. Further, CPUE used as a measure of abundance in
productivity and standardization studies creates an identification issue in regres-
sion models, such as general additive models or generalized linear models, to
analyze and explain variations in stock abundance or to standardize effort. The
identification issue arises when catch and/or effort are on both sides of the equa-
tion, leading to simultaneity bias, and when the regressor effort is a behavioral
variable (a choice variable decided upon by fishers) and endogenous, potentially
leading to biased and inconsistent parameter estimates



11 The question of static reference technology basis arises as whether to
compare the technology of periods t and tþ1 using period t technology or period
tþ1 technology or the geometric mean of both, which is what the Malmquist index
does. Hick's neutral means that the ratios of inputs remain constant with techno-
logical change, so that for example, physical capital (e.g., boat, gear) is not favored
over labor (crew). Biased technological change occurs when one input is relatively
favored over another. Fisher's factor reversal test states that the product of the
effort index and price index equals total cost.

12 Comparisons, such as standardization, should be transitive. For example,
fleet A has say more fishing power than fleet C, and fleet B has less fishing power
relationship to fleet C, then the fishing power of A should exceed B.

13 Disembodied technical change refers to technical change that is not embo-
died in an economic input, notably the capital stock or is not investment-specific,
i.e., it is independent of physical capital accumulation. Disembodied technical
change often refers to learning how to work with new technology that leads to
changes in fishing and post-capture handling practices.

14 Unless indicators such as new use of a technology (e.g., GPS) are included as
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catchability typically increases as abundance declines, thereby
causing “hyperstable” CPUE, in which CPUE remains high despite
decreases in abundance [12,18,19].

Density-dependent catchability is also an issue for bioeconomic
models, which are almost always estimated using fishery-dependent
data. Bioeconomic models are typically meant to apply to the entire
fishery, whether fished or unfished, which means that they can suffer
from the same uncertainties as that of stock assessments. BMEY
might be derived from only a portion of the potentially fished area.

Density-dependent catchability from using fishery-dependent
data is less troublesome to measures of productivity growth or
technological change, because these are positive measures based on
“what is,” i.e., actual fleet behavior and performance in actual areas
fished, rather than the entire resource stock range. When these pro-
ductivity measures are used in bioeconomic models, the issue of
density-dependent catchability does not arise unless the productivity
measure pertains to only some of the relevant vessels in a non-
representative way or fleet expansion to unfished areas is anticipated.

2.3. Time-varying catchability

In contrast to the bioeconomics literature, the population dy-
namics literature accounts for time-varying catchability [11].8,9 Not
accounting for time-varying catchability would otherwise lead to
biased estimates of stock size and stock productivity. Anthropogenic,
environmental, biological, and management processes may drive
changes in catchability over time. Time-varying catchability can be
found in both fishery-dependent and -independent data sources,
although it is generally believed more prevalent in fishery-depen-
dent data (survey vessels are more consistent in gear, technology,
areas surveyed, etc. than commercial vessels).

Several approaches standardize effort or CPUE data series for
time-varying catchability or allow catchability to vary over time
[11,17,21]. Standardization aims to ensure that the catchability
coefficient can be assumed constant, i.e., control effects other than
those caused by changes in stock size, notably changes in pro-
ductivity, density or effort dependence, species targeting, en-
vironment, and dynamics of the fleet or population (especially
factors leading to density-dependent catchability). Effort or CPUE
is adjusted for known changes in efficiency, or effort in other gears
is converted to a standard gear in which catchability is not thought
to have changed (a process called standardization). The various
methods for standardization of catch and effort data define the
efficiency of a fishing vessel as its fishing power relative to that of
a standard (and perhaps hypothetical) fishing vessel, most com-
monly by the ratio of the two CPUEs [21].10

Productivity theory provides insights for standardization. Stan-
dardization employing a standard production unit (e.g., gear group or
vessel) can be viewed in economics as a multilateral productivity
index or a frontier function estimated using panel data with de-
terministic or stochastic half-sided error terms. Standardization as an
a-theoretical approach assumes a single aggregate technology across
multiple fleets/gears, which allows aggregating through fixed
8 The population dynamics literature does not explicitly account for pro-
ductivity growth (fishing power), which is one component of time-varying catch-
ability. The fishing power literature is not based upon a consistent and compre-
hensive theory of production, and is largely an a-theoretical, reduced-form, sta-
tistical analysis.

9 An alternative, not discussed here, is time-varying selectivity.
10 Parameter estimates used in regression analyses of standardization could be

biased and inconsistent due to endogenous explanatory variables (unless found
otherwise through Hausman tests), such as effort (days/sets/trips) or catch of other
species. Endogenous regressors require an identification strategy and instrumental
variable estimation. Standardization may overlook heteroscedasticity and serial
correlation and cluster-specific heteroscedasticity and serial correlation with panel
data.
proportions over time, although consistent aggregation has rigorous
economic requirements [22]. Standardization also implies Hick's
neutral technical change with a static-reference technology base in-
cluding fleet and time period.11 Furthermore, constant and/or time-
invariant returns to scale is typically assumed, which does not allow
for differences over time in the structure of production and does not
satisfy all the desirable properties of economic index numbers. As-
suming a particular functional form for the aggregator functions of
catch and effort that give catch and effort indices may be prone to
potentially restrictive properties, and may be subject to intransitive
bilateral comparisons and failure of Fisher's factor reversal test (also
an issue for bioeconomic models).12 Finally, CPUE standardization
can only correct for measured factors that affect catchability and
requires available data for each factor [11].

As an alternative to standardization to account for time-varying
catchability, catchability can be explicitly modeled as a function of
time [11,23], including explicit technical progress [12]. This approach
captures all sources of time-varying productivity, so that changes in
productivity are conflated with abundance (and perhaps environ-
ment), and confronts the same problem as TFP measurement, that of
disentangling TFP and stock changes with a time trend (or related
variable). Simply put, stock assessments aim to remove the effect of
productivity growth from stock estimates and economists want to
remove the effect of stock changes from productivity growth. Both
approaches require an identification strategy to disentangle the two
sources of change, often using the same fishery-dependent data.

Productivity and economic index number theory has implica-
tions for catchability explicitly modeled as a function of time. As
with standardization, such an approach typically only captures
Hick's neutral disembodied technical change.13 Interactions be-
tween time and explanatory variables allow for biased technical
change that changes the ratio of inputs over time, but complicate
use of time to measure abundance changes [21]. This approach
does not typically capture embodied technical change,14,15 or time-
varying changes in technical efficiency,16 or nonlinear relation-
ships between effort and technical change such as congestion
(crowding) spillovers [12] and knowledge spillovers.17 A linear
time trend captures only a constant rate of technological change
regressors, but then run into the problem of varying rates of adoption and diffusion
throughout the fleet plus knowledge spillovers.

15 Embodied technical change is incorporated into an input (typically the
physical capital stock) through net investment in the input. Examples include new
designs in the hull, propeller, and gear, changing materials (e.g., steel versus wood
hull, monofilament nylon net instead of natural materials), Medina panel, in-
formation technology-embodied electronics and gear, all largely meant to improve
productivity (fishing power).

16 Technical efficiency refers to the maximum catch per unit of effort (input)
given a technology.

17 Consider nominal effort in time t, Et
α . Then αo1 gives congestion (crowd-

ing) (regardless of whether there is technological change) and α41 gives knowl-
edge spillovers when there is technological progress. α¼1 is expected with ex-
ternalities since linear homogeneity is required for the effort aggregator function
for a consistent index.
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and a quadratic allows a variable rate. Time specified in blocks or
steps is related to the general index of technical change [24].
Catchability can also be modeled as a function of density or an
environmental variable, although this approach excludes pro-
ductivity growth, essentially assuming it is static over time. Finally,
catchability can be allowed to change over time using state space
models. Random walks have been used, and perform better with
slower changing populations. All these standardization ap-
proaches are a-theoretical vis-à-vis the economic theory of tech-
nological change and more generally, productivity growth and
properties of economic index numbers, and make a number of
implicit assumptions that can affect results.

2.4. Productivity measurement using fishery-dependent and -in-
dependent data

TFP measures calculated using fishery-dependent data may be
confounded when using stock abundance measures from stock as-
sessments also estimated from fishery-dependent data, an identi-
fication issue. Stock assessments accounting for time-varying
catchability already, in some fashion, account for growth in TFP (and
other time-varying factors). The TFP residual then measures, at least
in part, what has already been accounted for using the same data.

There are a number of identification strategies. One identifica-
tion strategy revolves around using fishery-independent data. Stock
estimates from fishery-independent data may not confound TFP
measures, since stock estimates are exogenous to the fleet. Surveys
providing fishery-independent data that use a standardized design
and cover the full potential range of the stock will also be least
susceptible to time-varying catchability [11]. Nonetheless, stock
estimates using only fishery-independent data may not reflect the
abundance and availability actually encountered by vessels and
thereby give biased or less precise productivity measures.

Another identification strategy employs a two-step method. TFP
growth is first estimated using stocks estimated employing fishery-
independent data. This estimate, then employs the productivity
growth measure in additional stock estimates, and productivity
growth is then re-estimated using all data, etc., in an iterative
approach.18 An additional identification strategy uses integrated
stock assessment models to measure TFP growth. These assess-
ments use both fishery independent and dependent data. They also
utilize considerable information exogenous to the productivity
measure, including cohort, gender, age-length or size-length, and
recruitment [25]. Structure on growth and recruitment functions
also assists the identification strategy. Yet another identification
strategy uses the structure of fishery-dependent data as an identi-
fication strategy in VPA models [13].19 Still another identification
strategy occurs if the stock assessment uses fishery-dependent data
from additional fleets or areas that the TFP measure does not.

2.5. Incorporating productivity growth into stock assessments and
related bioeconomic models

As noted, there is not an explicit, theoretically consistent me-
chanism to incorporate productivity growth into population as-
sessments, and this paper provides some insights. Notably, when
18 Mark Maunder (personal communication) suggested this possibility. This
“two-step” approach differs from integrated analysis in which the parameters of
the population dynamics model and those related to catch-effort standardization
are estimated simultaneously by optimizing an objective function for all sources of
data available to the stock assessment model [25].

19 Ekerhovd and Gordon [13] (p. 382) observe, “…generated VPA stock esti-
mates must be correlated with the error term in a regression equation of catch on
stock because current stock is a function of current catch. To achieve consistent
estimates of the econometric equation it is necessary to instrument out current
catch in the VPA stock estimate.” Page 383 gives the specific instruments.
the effort measure excludes the physical capital stock in general and
investment in this stock in particular (e.g., echo sounders), time-
varying catchability does not have a mechanism to incorporate
technology that enters through net investment in physical capital
(i.e., embodied technical change), although if the time trend cap-
tures the productivity residual, it does so implicitly [26]. Depending
upon how effort is measured, the economically optimal combina-
tion of multiple inputs (allocative efficiency) may not be considered.
Similarly, without a best-practice harvesting frontier, technical ef-
ficiency is excluded. That is, unless the fishery harvest function
relating catch to effort and stock distinguishes production units
(countries, ports, fleets, individual vessels) with higher catch per
unit of effort for a given harvesting technology (technical efficiency)
compared to fishers with lower catch per unit of effort, then there is
not any way to allow for deviations in catch per unit of effort to vary
by production units. Instead, all production units are implicitly
specified to have the same technical efficiency. Knowledge and
congestion spillovers that create a nonlinear catch-effort relation-
ship are excluded. 20 That is, one vessel's investment in say fish-
finding electronics makes new knowledge about technological op-
tions and how to use them available to other vessels, which in turn
increases the effectiveness of this investment and the adoption of
new technology. This knowledge spillover effect is external to the
production process, i.e., is an externality. In short, the whole is
greater than the sum of the parts.

In principle, the catchability coefficient can be decomposed into
one part systematically accounting for productivity growth theo-
retically consistent with productivity and economic growth theories
and calculated using fishery-dependent data and a residual catch-
ability part accounting for other sources of time variability, such as
environmental changes. Many of these other components cannot be
estimated without auxiliary information, and changes in selectivity
(age- or length-based patterns in catchability) may also be conflated
with changes in overall catchability [11]. When abundance indices
are calculated with fishery-independent data, the possibility arises
for a constant catchability.

Bioeconomic models may also be extensions of population as-
sessments rather than independently specified and estimated. Such
bioeconomic models based upon time-varying catchability using
standard stock assessment approaches only account for disembodied
technical change, and exclude: investment in physical capital that
incorporates embodied technology; changes in technical efficiency;
input substitution; and knowledge and congestion spillovers, all
economically endogenous sources of change. Such bioeconomic
models estimated with time-varying catchability and fishery-depen-
dent data face potential density-dependent catchability issues, and if
estimated with fishery independent data may not accurately account
for changes in technology or technical efficiency. Bioeconomic models
estimated with fishing time (e.g., days/sets) as a measure of effort
assume time rather than physical capital as the limiting input
(Leontief separability) and preclude investment in physical capital,
embodied technical change, input substitution, and knowledge spil-
lovers as economically endogenous sources of change.
3. Growth accounting and Malmqvist–Törnqvist productivity
measures

In this study, the productivity growth residual measured by
20 The overall state of technology in the competitive fishery sector can be
determined in part by knowledge spillovers from investment in physical capital
(e.g., engines, electronics) embodied with new exogenous technology. Each unit of
net investment not only increases both the individual vessel's and aggregate stock
of knowledge-embodied physical capital, but also increases the level of technology
and productivity for all vessels in the fishery.



24 Limited data led to “integrated analysis,” which uses all available data, in as
raw a form as appropriate, in a single population analysis [25]. Analyses that were
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growth accounting is first developed and is subsequently esti-
mated. Let Yt denote catch in time t, X t1 denote variable inputs, X t2

denote physical capital stock, Bt denote natural resource stock,
dots over a variable denote proportional rates of growth, M t2 is the
cost share of physical capital, tψ denote rate of embodied technical
change, and λ denote constant rate of Hick's neutral, exogenous,
disembodied technical change. Under constant returns to scale in
effort, Hicks neutral exogenous technical change, full capacity
utilization for X t2 , full technical efficiency for reasons other than
embodiment of technology in capital, input allocative efficiency in
the aggregator functions for X t1 and X t2 , and no changes in output
quality) [16,26]: Y M X M X B M1 t t t t t t t2 1 2 2 2( ) ψ λ̇ = − ̇ + ̇ + ̇ + + . Re-
arranging gives the growth rate in the Solow TFP [27] residual:

Y M X M X B M1t t t t t t t t2 1 2 2 2( )ϕ λ̇ = ̇ − − ̇ − ̇ − ̇ = ψ + . The rate of embo-

died technological change, tψ , is then equal to ⎡⎣ ⎤⎦ M/t t2ϕ λ̇ − . Bt may

not be uniformly distributed, such as with schooling fish. Bt can
then be weighted, giving Bt

α [12] and Btα ̇ replaces Bṫ in the growth
accounting equation. For both the sole owner [16] and non-uni-
formly distributed Bt , there is no longer a one-to-one relationship
between Bt and Yt .

The Malmqvist TFP index between periods t and t�1 can be
approximated by the ratio of a Törnqvist output index to a
Törnqvist input index under constant returns to scale in both
periods [28].21 22 This provides a “Hicks–Moorsteen” TFP measure,
giving the ratio of growth in total output to growth in total input.
To employ economic index numbers, competitive input and output
markets is assumed, which is a plausible assumption here.

The Törnqvist index for effort in time t, Et , is as follows:
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The Malmqvist–Törnqvist bilateral TFP index with a single
output is as follows:

lnTFP lnTFP 3t t 1− = ( )−
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or equivalently is:
21 The Törnqvist index, perhaps the most widely used, is a discrete approx-
imation to the Divisia. It has a number of desirable properties: exact (exactly
corresponds to a translog functional form to aggregate the inputs comprising effort,
a widely used form) and superlative (can approximate a relatively smooth effort
aggregator function and allows input substitution) [29].

22 When the technology has the translog form, the Törnqvist and Malmquist
approach yield the same result [28]. The two approaches may differ if efficiency
differences are not Hicks–neutral or if there are increasing returns to scale, neither
of which is a concern in the case herein.

23 Both Eqs. (1) and (2) and Eqs. (3) and (4) are shown. Because estimation is
typically in logarithm form, Eqs. (1) and (3), the expression after calculation from
(1) or (3) is then placed into the form of Eqs. (2) and (4) through the exponential
operator. The logarithm form, Eqs. (1) and (3), is commonly interpreted as ap-
proximate percentage change from one period to the next. Thus, (1) and (3)
measure percentage growth and (2) and (4) measure levels, much like resource
stocks estimates provide both growth and level of abundance.
⎡

⎣
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦
⎥
⎥

TFP
TFP

Y
Y

X
X

B
B

/ .
4

t

t

t

t i

it

it

M M
t

t1 1 1

2

1

0.5

1

it it 1

∏= *
( )

( )

− − = −

+

−

−

A single input is used with a fixed proportions technology. This
index imposes both technical and allocative efficiency and con-
stant returns to scale. Technical efficiency implies evaluating
temporal changes in the production frontier without deviations
due to “catching up” or “falling behind”.

The TFP index for the albacore fishery case study is comprised
of US vessels over 1981–1989 and both U.S. and Canadian vessels
over 1990–2009. The geometric mean of the Törnqvist TFP indices
is employed for the U.S. and Canada to obtain an aggregate Mal-
mqvist–Törnqvist TFP index for the years 1990–2009:
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The albacore stock is assessed without time-varying catch-
ability using an integrated analysis (Stock Synthesis 3) and using
both fishery-dependent and independent data [30].24 Statistical
(Hausman) tests indicated that the stock estimate is exogenous to
effort, and this identification should hold for the deterministic
productivity indices [3].25 This study uses the S4 (base case) and
S2 (third case) time-invariant catchability coefficients from the
2014 assessment [30] (WCPFC 2014).
4. Productivity growth and the golden rule of renewable re-
source economics

The golden rule or fundamental equation of renewable re-
sources with disembodied and embodied technical change, full
capital utilization, and accounting for technical inefficiency in the
yield frontier and allocative efficiency with effort is as follows:26
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where the biological (logistic) growth function is
dB dt B Y/ Ft t t( )= − , P denotes constant ex-vessel price, δ denotes the
discount rate, t Z t, /μ−∂ ( ) ∂ denotes a nonpositive, half-sided error
term capturing time-varying deviations from the best-practice
frontier or technical inefficiency and allows for “catching up” and
“falling” behind the frontier over time, δ denotes constant social
discount rate, q is the time- and density-invariant catchability
coefficient (as used in the international stock assessment), and c is
constant cost per unit of effort.27 Removing the term capturing
traditionally carried out independently are now conducted simultaneously through
likelihood functions that include multiple data sources. Stock Synthesis 3 is a
widely used approach to integrated analysis [31].

25 The Durbin–Wu–Hausman version of the test was implemented by includ-
ing residuals from regressing stock on exogenous variables as additional variables
in nonlinear least squares of the fishery production function with the translog ef-
fort aggregator function directly inserted into the production function and the
likelihood value was compared to that without these additional regressors. Durbin–
Watson statistics indicated no serial correlation in the ordinary least squares es-
timation to obtain the residuals. Instruments included the constant term, Canadian
dummy variable, B P C X X, , ,t t t t t1, 1 1 1, 1 2, 1− − − − − .

26 See Fissel and Gilbert [32] for non-constant rates of technical change and
productivity growth. When effort is consistent measured and aggregated from in-
dividual inputs according to the theory of economic index numbers, the composite
aggregate effort index has allocative efficiency between the different inputs com-
prising effort.

27 See Clark and Munro [33] for non-constant P and c, which also gives a non-
autonomous model and golden rule.
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productivity growth, e M t t Z,2 1( )λ β ψ μ+ − ( ), in the denominator of the
marginal stock effect in Eq. (6) (second term from the left) and the
entire marginal technology effect (third term from the left) gives
the standard specification of the Golden Rule.

Disembodied Hicks neutral technical change, here measured by
constant λ, could be expanded to included a quadratic term, 2λ , so
that it is time-varying; ideally, 0, 0.2λ λ> < Step changes [24] and
stochastic shocks [32] are also possible. The first term from the left
in (6) is instantaneous marginal productivity of St , the second term
is the modified marginal stock effect (impact of St upon costs), and
third term is the new marginal technology effect (impact of
changes in technical efficiency, given allocative efficiency with
effort, and disembodied and embodied technical change upon
costs). Assuming constant ψ and M2 with Cobb–Douglas functional
form implies et

M t2Ψ = ψ , where tΨ is average measure of the level of
best-practice technology in time t that depends on the underlying
efficiency parameters and age structure of the entire capital stock
averaged over all vintages. When measuring productivity growth
as a residual, e M t t Z,2( )λ ψ μ+ − ( ) becomes eϕ ̇, where ϕ ̇ denotes the in-
stantaneous rate of productivity growth as discussed above, which
is approximated in discrete time as TFP TFP TFP/t t t t, 1 1=− − . Overall

time-varying catchability qe M t t Z,2( )λ ψ μ+ − ( ) becomes the product of
catchability q that is time-invariant vis-à-vis productivity growth
(but could be time varying for other reasons, e.g., environment),
and could be density-dependent (neither of which are explicitly
specified in q), and a time-varying catchability term e M t t Z,2( )λ ψ μ+ − ( ),
which is productivity growth, and estimated from fishery-depen-
dent data as in economic productivity analyses. Identification is-
sues arising when disentangling temporal changes in productivity
and St when using fishery-dependent data apply here.28

The analysis explores four empirical cases. The base case spe-
cifies a constant catchability coefficient and the stock exponent
equal to one. The second case specifies the stock exponent equal to
0.9.29 The third case specifies the catchability coefficient higher
than the base case. The fourth case specifies a lower rate of pro-
ductivity growth. Together, these cases illustrate the impact of the
catchability coefficient. There is not a classic no-growth, steady-
state solution to Bt

*, but instead a balanced growth path eventually
limited by Bt 's productivity. The marginal stock effect declines over
time, because density-dependent harvest costs are more than
balanced by technological change that lowers harvest costs. Over
time, both the marginal stock and marginal technology effects
decline, requiring continuing increases in the own rate of return to
the resource stock, F B/ t∂ ∂ , given constant δ . Higher rates of δ or
productivity growth hasten the decline of Bt

*. The limit rent-
maximizing resource stock as time approaches infinity accounting
for productivity growth is as follows [3]:
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where r denotes the intrinsic growth rate. Because the sum of
terms in brackets is less than or equal to 2, lim B Bt t MSY

* ≤→∞ , which
contrasts with dynamic economic optimum under static technol-
ogy generally exceeding BMSY [6]. Essentially, over an infinite time
horizon, productivity growth erodes costs close to 0, and Bt

* is
determined solely by r K, ,δ . B t/ 0tð * ð < , so Bt

* declines with
productivity growth, and B t/ 0t

2 2∂ * ð > , so that the declining stock
28 Technical change is exogenous, a plausible specification in fisheries, since
the most meaningful source of new technology is information technology from the
aero-space, military, and information technology sectors [3]. This technology is
then adapted to fisheries, such as electronic equipment to find fish and aid
navigation.

29 This can be interpreted as the catchability coefficient is a function of stock,
i.e., density-dependent catchability.
levels out for a given rate of continuous productivity growth for
the balanced growth path over an infinite time horizon, and the
scale, technically efficient, and allocative efficient stock declines at
a slower rate toward a stock level for which F B/ t δ∂ ∂ = . When rδ ≥ ,
lim B 0t t

* =→∞ , i.e., extinction is optimal under continuous produc-
tivity growth. In the intermediate and realistic case, r0 δ< < and

lim B B0 t t MSY< * <→∞ , which contrasts with the orthodox static-in-
technology dynamic model in which B B* > for most reasonable
levels of costs and prices and in which density-dependent costs
are more important.

The open-access resource stock accounting for productivity
growth is as follows:

B
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Pqe
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11M t t Z,
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∞ + − ( )

where again the productivity growth rate is accounted for by
e M t t Z,2( )λ ψ μ+ − ( ).
5. Empirical results and policy implications

This study examines the single-species U.S. and Canadian troll
fleets fishing for North Pacific albacore (Thunnus alalunga). These
fleets form part of the North Pacific albacore fishery of troll, pole-
and-line, and other surface gear for Taiwan, Japan, Korea, U.S., and
Mexico. Albacore migrate from off Japan across the Pacific at
around 40°N to the U.S. Pacific coast along the ocean surface, then
some swim north and others south in the California Current. They
swim in schools at speeds up to 80 km per hour and are found
near dynamically evolving ocean fronts and temperature breaks.
The unregulated industry and absence of bycatch imply no reg-
ulatory-induced or related directed technical change.

Trolling for albacore entails towing 10–20 lines each rigged
with a jig shaped to look like squid on the ocean surface, behind a
slow-moving boat. Pole-and-line gear consists of poles rigged with
a feathered jig mounted on a barbless hook. For this method to be
effective, albacore are attracted to the ocean surface alongside the
vessel by chumming with live bait and by the vessel itself. Vessels
find the albacore using physical capital embodied with informa-
tion technology, including sensing devices to find temperature
breaks, satellite data to identify ocean fronts, GPS, and echo-
sounders. There is minimal catch of other species, so that only a
single-product is produced.

Vessels are relatively small and family owned, with U.S. vessel
length averaging about 13 m, and harvest albacore from about
160°W to the North American Pacific coast and from 30°N to 55°N.
Other than gear and fish-finding equipment, the major on-vessel
innovation is an on-board freezer system.

The empirical analysis employs the catch and days fished data
used in international stock assessments [34]. From the albacore
stock assessment, 30 environmental carrying capacity K¼857,138
mt and MSY¼105,571 mt. Intrinsic growth is calculated as
r MSY K4 / 0.492667458.= = International stock assessments also
provide exogenous estimates of resource stock biomass for fish age
one plus [30] (WCPFC 2014). Cost (c) (US$2001) is set at the 1981–
2009 mean, giving $1164.72/vessel-day, where costs include op-
erating costs of fuel, oil, food, gear, and labor [35].31 P, a weighted
average of brine frozen, blast bled, and iced/fresh, is $3515.34/mt.
30 A comprehensive bioeconomic model for policy rather than illustration
entails including productivity estimates of all fleets harvesting albacore and would
also specify age-structured population dynamics rather than the Schaefer surplus
production model.

31 Costs were updated through use of economic index numbers, see [3], Ap-
pendix 1.



Fig. 1. Stock size paths for fleet productivity growth as the source of time varying
catchability.

Fig. 2. Open access stock size with and without productivity growth.
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The Canadian and U.S. landings, days, and vessel numbers are also
derived from the international stock assessment [34]. The catch-
ability coefficients in the base case were 2.55E-0.6 and in the third
case 2.13E-03 (see Table 5.3. in [30]).

The geometric average annual TFP growth with equal weights
for US and Canada is 7.12%, which is used as the base case.32 33 The
cost-share weighted annual TFP growth of both US and Canada is
4.67%, with annual cost shares that change each year and average
91.12% for the US, is used in case four to illustrate the impact of
lower technical progress.

Fig. 1 illustrates northern albacore stocks over 100 years as-
suming logistic growth and constant overall U.S. and Canada fleet
productivity growth as the only source of time-varying catch-
ability. Six different stock indices are depicted: optimal stock Bt

* in
the three cases, limit stock level lim Bt t

*→∞ , optimum stock without
productivity growth (the text-book case), and BMSY .

The results demonstrate first of all that lim Bt t
*→∞ BMSY< . Thus

the biomass that maximizes rent when incorporating productivity
growth is less than BMSY. Incorporating productivity growth
means that BMEY without productivity growth (B*) is a misleading
and false optimum. When accounting for productivity growth,
resource stocks and biodiversity in general face greater pressures
than realized, and there is an opportunity cost in foregone rent to
excluding productivity growth as in the traditional bioeconomic
model. The two different economic optimums and economic
welfares for society can differ considerably.

Second, the optimal approach paths to lim Bt t
*→∞ (the limit stock

under productivity growth) are different in the four cases. In the
base case, the stock begins above BMEY with productivity growth
and declines over time to the limit stock. With a stock exponent
equal to 0.9, the stock begins much higher, indicating higher
marginal stock and technology effects. With a lower catchability
coefficient, the marginal stock and technological effects vanish,
and the stock begins very close to the limit stock and is therefore
not shown in the figure. In the case with lower technical progress,
the optimal stock path follows closely the base case.

Fig. 2 illustrates the open access or bionomic equilibrium with and
without productivity growth. The open-access, no-growth, steady-
state bionomic equilibrium [10] may not even exist. Under pro-
ductivity growth, the pressures to the resource stock continue, because
costs continue to decline and profits are continuously replenished.

Fig. 3 illustrates marginal technology effects (MTE) and mar-
ginal stock effects (MSE) over 100 years, showing their relative
importance and the decline of the marginal stock and technology
effects over time. The marginal stock effect, which is the second
term from the left in the fundamental equation of renewable re-
sources or golden rule, Eq. (6), shows the impact of a larger re-
source stock upon lowering costs, thereby providing an economic
incentive to leave more fish in the water. The marginal technology
effect, which is the third term from the left in Eq. (6), shows the
impact of changes in productivity in lowering costs, thereby pro-
viding an economic incentive to harvest fish sooner rather than
later. Both the marginal stock and marginal technology effects
decline over time, because as productivity grows and with har-
vesting of the stock, the stock declines and there is a lower impact
from fewer fish upon harvest costs.34
32 The TFP measures are derived using Eq. (3) and the cost, landings, and effort
data. Taking the exponent of the results gives Eq. (4). These measures are then
placed into what is called a chain index, where two adjacent annual TFP measures
are multiplied, e.g., TFP TFPt t 1* − , for all years. Then chained TFP and its growth reflect
the cumulative impact of productivity growth.

33 The relatively high rate of productivity growth is due to new technology and
also likely due to the only economic inputs available were number of vessels and
days at sea. A more comprehensive input data set would likely explain more of the
sources of growth, and thereby lower the productivity growth rate.

34 The presence of discounting provides an additional incentive to harvest fish,
In all cases, the marginal stock effects are higher than the
marginal technology effects because the productivity growth is
lower than the average stock biomass growth. Compared to the
base case, both the marginal stock and the marginal technological
effects increase with a stock exponent¼0.9 and the differences
between the effects narrow. Both effects vanish, as noted, with a
lower catchability coefficient, which show no cost or technological
gains at higher stock levels and is therefore not depicted in the
figure. With lower technical progress, the marginal stock and
marginal technological effects are lower than, but similar to, the
base case.
6. Concluding remarks

This paper discussed four topics related to productivity growth:
productivity growth's impact upon BMEY and bioeconomic model-
ing; its relationship to time-varying catchability; productivity
growth's relationship to fishery-dependent and -independent data
and density-dependence in bioeconomic models; and identification
in disentangling changes in resource stocks and productivity from
fishery-dependent data as well as endogenous regressors in harvest
(footnote continued)
since revenue received now is worth more than revenue received in the future.



Fig. 3. Marginal stock effects and marginal technology effects.
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functions and when standardizing CPUE.
Productivity growth substantially impacts the rent-maximizing

level resource stocks, and can lead to BMEYoBMSY, i.e., overf-
ished stocks, counter to conventional wisdom. In a nutshell, pro-
ductivity growth lowers the costs of finding and harvesting fish
over time, and there are now fewer cost savings from leaving
unharvested fish in the water to lower costs. The distance between
BMEY and BMSY is determined by the rates of intrinsic growth,
interest, productivity growth, and discount. The marginal stock
effect has no impact upon the final result, and only affects the
approach path to BMEY, which is determined by all the biological
and economic parameters. Imposing no-growth steady-state
bioeconomic equilibrium without accounting for productivity
growth gives erroneous results of BMEY4BMSY and misleading
policy recommendations, such as underharvesting to save and
invest in natural capital to obtain a larger resource stock to lower
costs. Productivity growth, as a component of time-varying
catchability, also impacts stock assessments.

Applying density-dependent and time-varying catchability in
the empirical case leads to quite different approach paths com-
pared to the cases with only time-varying catchability. This em-
pirical case shows that it is optimal to begin with a higher stock
level. Generalizing this result is not possible, and more research is
needed. However, it reinforces the importance of carrying out an
estimation procedure that allows for dependence of time and of
resource stock density.

CPUE standardization, estimates of fishery production func-
tions, and productivity measurement all face identification issues
in disentangling changes in resource stocks and productivity as
well as potentially endogenous regressors (since the regressors,
such as effort, are also choice variables). They also face issues of
aggregation across different technologies and components of catch
and effort. This paper discusses several potential identification
strategies.

The study results show that bioeconomic models can give
biased results (e.g., BMEY4BMSY rather than BMEYoBMSY) and
biased policy advice when not accounting for time-varying
catchability—notably productivity growth—and density-depen-
dent catchability. It is fair to conclude that the standard bio-eco-
nomic model without productivity growth is actually a special case
in bio-economics. Biased bioeconomic results and policy advice
also arise when not distinguishing between fishery-dependent
and fishery-independent data and the implications for catchability,
modeling, and applicability of results.
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